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On Robust Dynamic Controller Design

Sanghwa Jeong*
(Received April 27, 1993)

The general formulations of dynamic controllers are provided and two types of dynamic
control schemes are developed. A design methodology has been synthesized in the time-domain.
New suffiicient conditions are established for asymptotically stabilizing the dynamic controlled
systems when the system has structured norm-bounded uncertainties in the continuous-time as
well as in the discrete-time. Stability robustness is usually measured by the tolerance of plant
matrix perturbations and the feedback control law in the time-domain. In an illustration, two
dynamic control algorithms are implemented in an retail model of Industrial Dynamics to

describe the design procedure.
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Nomenclature

A; . j-th eigenvalue in s-domain

Z; . j-th eigenvalue in z-domain

R . Set of real numbers

R : Set of nonnegative real numbers
{x€R : x=0}

R : Vector space of dimension » in R

R™m . Matrix space with elements of z rows

and »; columns in R
Zy : Set of nonnegative integers : {0, 1,2, -}

Re[ - ] : Real-part of the complex eigenvalue [ -+ ]

Subscript

c : Continuous-time

d : Discrete-time

Superscript

e : Integrated-Error with State-Feedback
(IESF) controller

s : Integrated-Error with State-Feedback
and Filtering(ISFF) controller

PDR : Purchasing rate decision at retailer
(units/week)

IAR : Actual Inventory at retailer(units)

UOR, UOD :; Unfilled orders at retailer and
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distributor(units)

RRR : Requisitions(Orders) received at retailer
(units/week)

RSR : Requisitions(Orders) smoothed at retailer
(units/week)

1. Introduction

In the design of control systems, it is necessary
to eliminate completely the effect of offset errors
caused by constant disturbances. Integral action
on the dynamic controllers results in a closed-
loop system in which the outputs follow step
commands and reject unmeasurable arbitrary
disturbances with bounded constant values. The
stabilizing effect of the integral control can be
counteracted by appropriate state-feedback action
so that one can eventually achieve a satisfactory
transient response as well as the desired zero
steady-state error for arbitrary constant inputs.
The pseudo-derivative feedback(PDF) control, a
dynamic control with integral action, was
introduced by Phelan(1977). He has suggested
that the PDF controller constitutes an optimum
scheme for all types of plants. The PDF control
scheme of x-th order plant consists of one inte-
grator in the feedforward loop with (% —1)-th
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order derivatives in the feedback loop. PDF
demonstrates very good performance when util-
ized with certain low order systems but encoun-
ters serious noise effects in higher order(>3)
systems. Seraji(1979) has applied PlI-type control-
lers for multivariable systems and Krikelis(1982)
has developed the PDF control scheme for 4th-
order tracking problems with two PDF control-
lers in series included in one derivative term in
the feedback loop. Maday(1987) has formalized
the Integated-Error with State-Feedback(IESF)
control scheme by a closed-loop pole-placement
technique in the hybrid control system,which is
an extension of PDF without the derivative term
in the feedback loop. Recently, Aida and
Kidamori(1990) has designed an optimal servo-
system by a classical Pl-type state-feedback con-
trol. In this paper, two types of dynamic control
scheme are investigated. One is an IESF control
and the other is Integated-Error with State-
Feedback and Filtering (ISFF) as a new algorith-
m for dynamic controller. In Addition, general-
ized formulations about dynamic controllers are
provided.

Although the dynamic control scheme has been
developed to enhance system performance, stabil-
ity robustness for the dynamic controlled systems
has not been studied sufficiently. Robustness is
usually measured by the tolerance of plant matrix
perturbations in the time-domain. In the linear
system with the output feedback control, suffi-
cient robust stability conditions are derived by
Sobel, Banda and Yeh(1989). Decentralized
robust control for perturbed large-scale systems
controlled by full-state feedback has been devel-
oped by several authors(Wang and Chang, 1989 ;
Wu, 1989 ; and Ho et al., 1992). In this paper, a
established for
asymptotically stabilizing the perturbed systems
controlled by dynamic controllers, when the sys-
tem has structured norm-bounded uncertainties.
Moreover, the

new sufficient condition is

condition for the
asymptotical stability in discrete-time dynamic
controlled system has been derived. This paper is
divided into six parts:the formulations of the
IESF and ISFF dynamic control laws are de-

sufficient

scribed in Sec. 2. Section 3 presents a methodol-

ogy for an evaluation of ISFF controller gains
using the eigen-structure. In Sec. 4, robust stabil-
ity criteria for dynamic controlled systems are
derived in the continuous-time domain as well as
in the discrete-time domain. An algorithm and
examples are shown in Sec. 5 and conclusions are
provided in Sec. 6.

2. Problem Formulation

Let us consider a linear, time invariant(LTI)
dynamic system as follows :

2()=Ax(t)+ Bu(t), x(0)=x, (1)
y(t)=Dx(t) (2)

where x(¢)& R" is the state of the plant, ()&
R7™ is the control input to the plant and y(¢)E R*
is the output of the plant. It is assumed that ( 4,
B) is stabilizable and (A, D) is detectable. 4, B
and D are real matrices whose size is appropriate
to each system, matrix B being of rank » and D
of rank /. If the plant is controlled by a
continuous-time controller with g-th order error
dynamics, a generalized feedback and feedforwar-
d control law are described by

X -(8)=Fx )+ Gx(t)+ Pr(¢) (3)
u(t)=Rx.(t)—Qx(t)+ Cr(t) (4)

where x,.(¢)=R? is the state vector of the
dynamic controller of order ¢, »(¢t)ER? is a
reference input, F, G, P, R, @ and (C are
matrices of appropriate dimensions. Pure inte-
grators of filters can be included in Eq. (3). Equ-
ation (1) augmented by Egs. (3) and (4) yields

Zr(t) F G xr(8) P
oo |=Lax A—BQ][x(t)]+[Bc]’(’) ®)
Next, continuous-time plant
controlled by a discrete-time controller, where the
sampling time is 7°. The plant can be discretized
by
2T+ T)=0(T)x(kT)+ 6(T)u(kT),
x2(0)=1xq (6)

where

consider a

O(T)=e", O(T)=/i0(T — r)Bdr,
for =0, -.., c©

A generalized discrete-time feedback and feedfor-
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ward controller is represented by

xBT+ T)Y=x,kT)+ T{Fx(kT)
+Gx(kT)+ Pr(kT)} 0]
w(ET)=Rx-(kT)— Qx(ET)+ Cr(kT) (8
The closed-loop system combining the controller
dynamics can be written as follows.

[xr(kT + T)] _ [1 +TF TG ] [xr(kT)]

x(ET+T) OR O0—0QI1L x(ET)
TP
+ [@C]r(kT) 9)

where x(£T)E R" is the state vector of the plant
and x,(kT)ERY is the state vector of the
dynamic controller. The dynamic systems includ-
ing a dynamic controller as well as any conven-
tional controllers, full-state feedback or output
feedback, can be described by Egs. (5) and (9).
Two kinds of dynamic controllers are introduced
in the next two sections. One is IESF control
which consists of the cascaded system of PDF
controllers, while the other is ISFF which con-
sists of at least one PDF controller, full-state
feedback and a first-order filter.

2.1 Integrated error with state-feedback

control(IESF)

In an #-th order system, the IESF controller
may be characterized by at least one forward
cascaded PDF controller with the combination of
an error integration and a proportional state
feedback. Integral action of IESF control results
in a closed-loop system in which the output fol-
lows a step command and rejects certain un-
measurable arbitary disturbances. Figure 1 shows
a typical single-input single-output(SISO) IESF
control block diagram of a x-th order plant.
From Eq. (5), choosing F, G, R and @ suitable
for continuous-time IESF control, the total sys-
tem controlled by continuous-time IESF control
can be described by x &(f)= A« t)+ Bér(t), x&0)

Fig. 1 1ESF control of x-th order plant.

= x5,
where

0-- 0 0 —4 0 0
ka"' 0 O—kzka 0 0

5_—— 0 o kza—l 0 0 _kzn-Zan«l “kZu—l y
0 b an din-1 tin—bikan

-

0 0 by am Qnn-1 Ann— bnkan
Bcez[kl 0-- 0]{x2ns

28 t)=[%r1 = xm 21 %]

%, is the auxiliary error state vector of IESF, for
i=1, .., m, x; is the state vector of the plant, for
;=:1, -+, 5 and k, are IESF controller gains, for
j==1, -+-,25. The controller gains k&, ---, k;, can
be chosen such that the poles of the closed-loop
system A$ are at the desired locations in the
s-plane. In moderately high-order systems, a sym-
bolic manipulation package might be required to
calculate controller gains gy, -+, ky.

Next, consider a linear discrete-time IESF con-
trol comprised of x-th order subsystems with a
sampling time 7. From Eq. (9), choosing F, G,
R and @ suitable for a discrete-time control, the
total system becomes x{(£T + T)= Aixi(kT)
+ Bir(ET). x40)=x&;

where

1 0« 0 0 —fT - 0
kT 1 0 0—lksT- 0

0 o —knaT |,

e=| 0 0
0 0-.. 0 01 ¢1l ° ¢ln'_61k2n

0 0. 0 Hn ¢n2 ¢nn'_0nk2n
§=[k1T 0. O]lszn,
x8ETY=[xr1 " xm %1+, %)

In a similar manner, the controller gains &, ---,
kin can be determined by pole-placement such
that poles are moved to desired locations. ’

2.2 Integrated error with state-feedback

and filtering(ISFF)

The ISFF control scheme is constructed by a
serial connection of at least one PDF controller,
a full-state feedback and a first-order filter. If the
closed-loop system is stable, ISFF control rejects
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nth erder
aystem

Fig. 2 ISFF control of #-th order plant.

the step disturbances(input or output) due to the
integrator in the feed-forward loop. This is seen
readily in the construction of total transfer func-
tion. Figure 2 shows a block diagram of a typical
SISO ISFF control in the -th order plant.
Selecting F, G, R and @ corresponding to the
continuous-time ISFF control, the total system

becomes  xX(¢)=AxXt)+ Bir(t), x80)=xk,
where
[0 0 =4 0 - 0O
1 —kn+2 _kz “‘ka _er-l
Al= 0 b an @iz **° Gin |
_1 bn QAnt Qnz °** Qnn
kl Xri1
0 Xr2
B:= , x8t)=| x |.
(n+2)x1 Xn

xr1 is the auxillary error state vector of ISFF, for
i=1, 2 and k; are ISFF controller gains, for ;=
1, ---, n+2. Orders of the total system controlled
by ISFF control are increased by two for the #-th
order subsystem. The controller gains £, -« , kniz
can be obtained by pole-placement at the desired
locations in the s-plane. In this system, one can
easily determine controller gains by solving 5+ 2
linear equations using the eigen-structure(Jeong,
1992).

If the subsystem is controlled by discrete-time
ISFF control, the total system can be expressed by
xJ kT + T)=AxIkT), x30)= x50, where

1 0 —kT 0 - 0

1 —km—zT "sz —kaT""‘anT
A2= 0 6 ¢11 ¢'12 ¢ln ’

0 0,, ¢n1 ¢n2 ¢nn

le Xr1

0 Xrz
Bi=| . |, xdkT)=|m |

0 :

In a similar manner, the ISFF controller gains
can be obtained by pole-placement at the desired
locations in the z-plane. The general formulation
for obtaining ISFF controller gains is derived in
the next section.

3. Evaluation of ISFF Controller
Gains

If the total closed-loop system matrix AS in the
previous section has distinct poles assigned in the
stable region of the s-domain, the following form
is used for obtaining ISFF controller gains :

(Al —AD)P,.=0, for k=1,--, n+2 (10)

where A, is a distinct pole in the stable region in
the s-domain and P, is the eigenvector associated
with A,.

Applying Eq. (10) for ISFF control, which
makes the total order of the closed-loop system
increase by 2, the following (% +2)-th order equa-
tion is obtained

A 0 h o 0 b, 0
Vit ke ke - kan Py 0
0 —b A—au —an = . (11)
: : : : : 0
0 _bn —dn "'Aj_ann Pn+2i
where j=1, .-, n+2. The following submatrix
is used to determine Py;, Py;, +++, Pnyos for j=1,
-, nt2,
EoPi=Priy (12)
where
—b /L«—au — Qin-1
Ey=| ! ,
¢ —bn-1—@an-n /L“’an—mn
—b, —am —QAnn—1
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Pz,' alnPn+2j
st azrzPrH-ai
Pr=| i |, Pia= :
Py —Ait @nnPria;

Setting one of the eigenvector elements to be
eqlial to unity and choosing P,.,;=1, then Py
Py;, «++, Py.z; can be obtained easily by solving
Eq. (12) if E,; is not singular after an eigenvalue
is placed at the desired location. From the first
and second row of Eq. (11), one obtains

k
[(I,‘ Pa_; Pu Pn+2j Pz.,] 1?2 =[_‘/1jP2j] (13)
kniz
where
aj=%P3j’ for ]=1, [TPEN n+2

When the closed-loop system matrix A$ has
distinct poles in the stable region of the s-domain,
the gains &, -+, kn4, Of the continuous-time ISFF
controller can be obtained by a simple matrix
inversion of Eq. (13). If the system is controlled
by a discrete-time ISFF controller, the gains k,,
=+, kansz Of the disctete-time control can be
determined in a similar manner. When distinct
poles are placed at the desired locations in the
z-domain, the two resulting equations for evaluat-
ing discrete-time ISFF controller gains are

E4iPf= Pi.y; (14)
where
—6u z—¢n — Pin-1
E = : : : ,
“ —9n—11"¢n—n Zz‘“¢n—m—1
- 0711 - ¢n1 - ¢rm—-1
I%j ¢lan+b
l%j ¢2nF%+w
PJd= : ’ P’;‘*'ZJ: E g
Pri; —2i+ PanPrizs
and
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k
ko
T- [ﬂj Psj Pij o+ Pris; sz] .
kns2
=[—~(z~ 1Py (15)

where

T

ﬂjzmpiﬁs for j=1,---, n+2,

z;=distinct poles in the stable z-domain.

Selecting Py, to be equal to 1, for j=1,--.,
+2, Eq. (14) provides P,j, -+, Pnyq;- When the
closed-loop system matrix A in the previous
section has distinct poles in the stable z-domain,
ks o+ knyp of the discrete-time ISFF controller
gains can be evaluated by Eq. (15).

4. Stability Robustness in
Time-Domain

4.1 Preliminaries

The concepts and properties of matrix and
vector norms are required for presenting stability
conditions of dynamic controlled systems. Some
definitions and lemmas are reviewed in this sec-
tion.
Definition 1 (Desoer and Vidyasagar, 1975)
Let x=[x1, -, xx])ER" and A=[g;]ER™";

def n
then ||x]|= lex,l and
b=

JAI= max,{2-1lasl) (column sums).
Lemma 1 (Bellman-Gronwall’s Inequality)
(Desoer and Vidyasagar, 195)
Let #, g; R, — R and locally integrable ; if £(¢)
=f, g(t)=g(=0), and y: R, — R satisfy

(< f+gliv(c)dr, V=0,
then y(¢)< fexplgt], V¢=0.

Lemma 2 (Bellman-Gronwall’s Inequality for the
discrete case) (Desoer and Vidyasagar, 1975)
Let vp. fe. k. be real-valued sequences for £=0,
.-, oo on the set of nonnegative integers Z, and
he20, VREZ,.

If

< fat 20 he v:£=0,1,2, -,
O=si<k

then v fu+ 3) [ i (l+h,~)h.-f.-],

SI<kli<j<k
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where TT;;cx(1+ %;) is setequal to 1 when ;=%—1.
Remark From the above Lemma 2, one notes
that
(a) if for some constant hy, k. < hy, V; then p,
Sfat huosicall +Ru)* 7V
(b) if for some constant fy,, £,< fy, V., then p, <
Sullosick(l+Ay)
Lemma 3 (Jeong and Maday, 1993) If a matrix A
& R™" is diagonalizable and whose eigenvalues
are J;, for =1, --- | #, there exists a constant %>}
such that Jexp(A#)|< kexp(—at), for {=0, o
>0, where — g=max:{R[A:(A)]},for ;=1 -, n.
4.2 Robust stability in continuous-time con-
trol
Consider an LTI system with uncertainties
controlled by a continuous-time dynamic control-
ler. From Eq. (1), the continuous plant with
uncertainties 44 and 4B is described by

2 ()=(A+4A)x()+(B+AB)ul(t),
x(0)==x0 (16)
It is assumed that 44 and AB are linear time-
invariant parametric additive perturbations with
the following upper norm-bounds; |JA[< 7,
|4B] < ¢. The dynamic control law can be ex-
pressed by x,(t)=Fx,(¢t)+Gx(¢) and 3(t)=
Rx, (1) —Qx(2).
Combining the above system, the state-space
form of closed-looop system is prescribed by

xc(t):Acxc(t)+ Uc(t)7 XC(O)ZXCO 17)

where
0
Uc(”:[AAx(t)+ABer(t)—ABQx(t)]'

The solution of Eq. (17) becomes

x(t)=exp(Act)xco
+ flexplAclt — o)) Uclz)dr  (18)
Suppose that A, is stable and diagonalizable.
From the Lemma 3, exp(A.t) satisfies
lexp(AcH)| < kcexp( — act), for ¢ >0, a. >0, k2> 1,
where —a.=max{Re[A(A.)]}, for =1, -,
n+q- Since it is assumed that |4Al<y and
l4Bll< ¢, it is noted that the norm of [J.(¢)
becomes

NULDN< 7l (O + SR — UM, (19)

From the above analysis, one can obtain the
following theorem concerning the robust stability
of dynamic controlled system.

Theorem 1: Robust
Controlled system.

stability for dynamic
The parametrical perturbed system controlled by
a dynamic controller is asymptotically stable(g.
s)if F, G, R and @ are selected to satisfy the
following conditions ;

a) Acis as.

b) ac>ke{y+ LR - QI
proof see Appendix A.

Theorem 1 shows that in the continuous-time
case, robust stability is guaranteed if the nominal
eigenvalues of the dynamic controlled system lie
to the left of a vertical line in the s-plane which
is determined by the norm bounds associated with
the structure of the uncertainty and the feedback
control law(R and Q).

4.3 Robust stability in discrete-time control

Consider an LTI system controlled by a
discrete-time dynamic controller with uncer-
tainties. From Eq. (6), the discretized plant with
uncertainties 4@ and 4@ is given by

(kT + T)=(O(T)+A40(THx(kT)
+(O(T)+40(THIu(kT),

2(0)=1xo (20)
It is assumed that 4@ and 4@ are linear time-
invariant parametric additive perturbations with
the following upper norm-bounds: |4Q| < &,
|4@| < #. The dynamic control law can be cho-
sen by x, (kT + T)=x,(kT)+ T{Fx,(kT)+ Gx
(ET)} and w(kT)=Rx,(ET)— Qx(kT).

Combining the above system, the state-space
representation of closed-loop system becomes

xd(kT+ T)=Adxd(kT)+ Ud(kT),

xd(O)ZJCdo (21)
where
[xART) _[I+FT GT
""(kT)“[x(kT)]’ A“’[ OR ¢~@Q]’
UART)=[ 0 ]
AOx(kT)+ AORx(kT)— 460Qx(kT) S

The solution of Eq. (21) is expressed by

xd(kT)=A:;xdo+’h‘z;;Ag-h-IUd(hT)
for k=0, 1, 2, --- (22)
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Based on the assumption that (@, @) is stabil-
izable, the controller gains F, G, R and ¢ can be
determined such that A, is asymptotically stable
and its eigenvalues are distinct. Then there exist
positive constants m.(m.>1) and r(0< 7. <1)
such that (Ogata, 1987)

0<||Adll* < mer (23)
It is seen that the norm of {/,(£T) becomes

NULRT)|< Elx(xT)
+¢I[R— Qlllxa(£TH (24

From the above analysis, one can obtain the
following theorem concerning the robust stability
of discrete-time dynamic controlled system.
Theorem 2: Robust Stability for discrete-time
dynamic controlled system
The parametrical perurbed system controlled by a
discrete-time dynamic controller is asymptotically
stable(q.s) if F, G, R and @ are selected to
satisfy the following conditions ;

a) A4 is a.s.,
b) 0> re+m&+ ¥R~ QJN<]

proof see Appendix B.

Theorem 2 shows that in the discrete-time case,
robust stability of the dynamic controlled system
is guaranteed if the summations of the maximum
mangitude of eigenvalues in the z-domain and the
norms involving the uncertainty tolerance and the
feedback control law are less than unity.

5. Algorithm and IHustrations

Based on the above analysis, an iterative algor-
ithm is proposed to determine the dynamic con-
troller to satisfy the robust stability condition.

Algerithms :

i ) Choose the controller type and the parame-
ters I, G, R and @ such that the closed-loop
system of A.(or A,) is aymptotically stable.

ii ) Calculate the constants k., a. for
continuous-time case or m,, r. for discrete-time
case.

iii) Evaluate the structured uncertainty upper-
bound.

iv) Check the robust stability condition of
theorem 1(or theorem 2). If it is satisfied, then

stop ; otherwise, go to next step.

v ) Move the poles of the closed-loop system
Acdlor Ay) to the left in the s-domain in the
continuous-time case or move to the origin of the
z-domain in the discrete-time case. Then go to
step( i ).

Example :

Consider a linear nominal system of an simplified
retail sector in the production-distribution system
of industrial dynamics described as
follows(Forrester, 1961) : X,(#)=A,X.(¢)+ Bru
(1) + Cor(t)

where X,(t)=[IAR UOD UOR RSR]", u(t)=
PDR(t), r(t)=RRR(t),

0 05 —10 0 0 0

A_o-o.s 0 0 B_l C_o
o 0o 10 0 |7 |oP YT |1
00 0 -05 0 0.5

Since the fixed feedforward loop and the smooth-
ing process have no effect on the stability only if
their poles are stable, consider the following
subsystem to examine stability ; % ()= Ax(¢)
+ Bu(?)

where

005 - 0

0—05) B=[1]
The continuous-time IESF dynamic control

law(F, G, R and @) can be chosen by

x(1)=[IAR UODY", A=[

F_[ 0 0] G__[—O.IZS 0
71927900 T -5.427—-4.640]’
R=[01], @Q=[03.02].

The nominal closed-loop eigenvalues are given
by s=-—095 —092, —0.85, —08. Hence .=
max{ Re[A:(Ac)]}=0.8. Assume that the structur-
ed uncertainties are bounded by |4A|< y=0.3,
|4B|l<&=0.1. From the theorem 1, the suf-
fiicient condition of robust stability yields

a-=0.8>k{y+ ¢ R— QI
=1x{0.3+0.17(3.02)} =0.602

The robust stability inequality of the theorem 1 is
satisfied and the robust IESF dynamic controller
can stabilize the perturbed system.

Next, consider a continuous-time ISFF dy-
namic control. One can select the ISFF controller
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gains and the dynamic control law(F, G, R and
Q) can be chosen by

F—[O 0 ] _[~1.189 0 ]
“TLt—3,02" Y T 1—5427-3.130)
R=[01], @Q=[00],

The nominal closed-loop eigenvalues are given
by s=—-0.95, —0.92, —0.85, —0.8. Hence a.=
max{ FRe[A:(A:)]}=0.8. In a similar manner, the
sufficient condition of robust stability becomes

a:=08>k{r+ ¢I[R - Q]I}
=1x{0.3+0.1x(1.0)}=04

The robust stability inequality of theorem 1 is
satisfied and the robust ISFF dynamic controller
can stabilize the perturbed system. Moreover, one
can see that ISFF dynamic control has a larger
robust stability margin than IESF control.

Likewisely, one can check the robust Stability
of theorem 2 in the discrete-time case.

6. Conclusions

When the system is controlled by the dynamic
control law, new sufficient conditions have been
established for the asymptotic stability of a linear
time-invariant system, subjected to structured
parametric norm-bounded uncertainties in the
continuous-time case as well as in the discrete-
time case. In the continuous-time case, robust
stability is guaranteed if the nominal eigenvalues
lie to the left of a vertical line in the s-domain
which is determined by the norms associated with
the structure of the uncertainty and feedback
control law. In the discrete-time case, robust
stability is ensured if the summations of the
maximum magnitude of the eigenvalues in the
z-domain and the norms involving the uncer-
tainty tolerance and the feedback control law are
less than unity.

Appendices

A. Proof of theorem 1
Taking the norms on both sides of Eq. (18)
and utilizing the norm inequality(19), one obtains

2 ) < kcexp( — act)l| %ol

+ fékeexp(— aclt — ) 7llx (D

+ ¢IR - QlllxL D)} dr
since x()] <[x(#)]. then
lxe()llexplact) < kel xcol + kS & 7
+ IR — QIMlexplacr)lx )l dr

Applying Lemma 1 of Bellman-Gronwall’s

Inequality, the above equation reduces to
lxc(t)]l explact) < kel xcoll exp(ke{y+ ¢I[R
—Q]ll}£), or equivalently,

lxc (< kellxcol exp([~ ac+ kc{ry + CI[R
—@Q1I}]1#). Hence, it is obvious that
if o> ke{y+ ¢I[R—Q]}, then ||£(2)} — 0 as ¢
— 0. Q.E.D
B. Proof of theorem 2

Taking the norms on both sides of Eq. (22)
and using norm inequalities (23) and (24), one
obtains

k-1
Il AT < merelzanll + Z mers ™
{Elx (AT + YR — QIMxs(RT)I}-
Since ||x(£T)|<|x.(£T)|. and rewriting the
above equations,
k-1
“xd(kT)" . *< me“x40“+ mel’e—lhz::()

{&+ ¥R - QN xal AT zem".

Applying Lemma 2(b) of Bellman-Gronwall’s
Inequality for the discrete case, the above equa-
tion becomes

Il ATz * < ml ol 1T
(1 mez &+ VIR - QID),

or equivalently,

xR < mellxdoll:T;I;{re-F md &+ ¢I[R—-QID}

= mel| xaoll{re + me( €+ ¢I[R— QNI
Hence, it is obvious that if 0< 7,+ m(&+ ¢||[R
—Q1h< 1, then |x (T)| — 0as £ - . Q.E.D.
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